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The thermally elastic state of a body in two dimensions with cracks has been in- 
vestigated in a number of articles (see the survey in [I]). However, in the major- 
ity of cases problems have been investigated in which temperature stresses in a 
body are weakened by a single crack. The existing solutions of problems on the 
interaction between thermally insulated cracks in an elastic body have been con- 
fined to simple cases either with collinear [2, 3] or with arched cracks [4, 5]. 
Below the two-dimensional thermoelastic problem for an infinite body with arbi- 
trarily positioned straight-lined thermally insulated cracks is studied by re- 
ducing it to a system of singular integral equations. An approximate solution is 
found for large distances between cracks. An exact solution is obtained in the 
case of a periodic system of collinear cracks. 

i. A two-dimensional problem of heat conduction is considered for a body with thermal- 
ly insulated cracks. Let there be N straight-line cuts (cracks) of length 2ak(k=1,2 ..... N) 
(see Fig. i) in a plane with a Cartesian coordinate system xOy. At the centers Oh (x~, y~) 
of the cracks there are positioned the origins xhO~, of local coordinate systems whose 
Ohx k axes coincide with the lines of the cracks each making an angle ~h with the Ox axis. 
It is assumed that in a continuous plane with no cuts the temperature distribution is de- 
scribed by a given harmonic function Q(x, y). 

The determining of the stationary temperature field in a plane containing one crack, 
Ix~I~ ah, yh=0, reduces to the solving of the following singular integral equation [6]: 

ak 
t j* ~ (t) dt 20to (x, y) 

-~ t --  x h Oy h yk=0 
--a k 

= & (xh), Ixhl ~ a~, (!. 1) 

where ?h(xh)= 0.5 [t+ (x~, O) - -  t~- (xh, O)l is the density of the Cauchy integral 
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I ~ ~k (t) d.__.___lt 
F k ( Z h ) =  ~ i  t - - z k '  z h =  xh ~- i yh '  

--a k 

(1 .2)  

which expresses the perturbed temperature field th(x h, Yk), 
due to the crack t k(xh, yh)=Re f~(zh). The total tempera- 
ture field in such a domain is equal to Tk(x, y)=th(x h, Yh)q- 
to(x, y). 

The s o l u t i o n  of  E q .  (1 .1 )  which i s  unbounded a t  
both ends of the interval [--a~, a~] is given by [7]. 
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' l "i (t) dt ( 1 . 3 )  

I t  c an  be  shown t h a t  t h e  f u n c t i o n  F~(zk) i s  i n v a r i a n t  w i t h  r e s p e c t  t o  a p a r a l l e l  t r a n s -  
l a t i o n  o f  t h e  c o o r d i n a t e  a x e s  t h o u g h  i t  i s  n o t  •  w i t h  r e s p e c t  to  t h e  r o t a t i o n  o f  
t he  c o o r d i n a t e  a x e s .  I f  t h e  c o o r d i n a t e  s y s t e m  xaOhy k i s  r e l a t e d  t o  t h e  xOy s y s t e m  by  t h e  
relation 

and the function F(z) plays the same part in the xOy system as the function Fk(z k) in the 

XkOkY k system, then 

F~ (z~) = e ~ F  (z~e ~ + z~). ( 1 . 4 )  

If on the N intervals Ixkl~a~, yk=0(k=l, 2 ..... N) the gaps ?k(~) in the temperature 
field are given, then the temperature distribution in the entire domain is given by the 
formula 

T(x, y )=t (x ,  y)~-to(x, y),'.t(x, !y)=ReF(z). 

In the above the function 
N ak 

F(z ) -~  t E e - - i a k  t" ?h(t)dt 
2gi t -- z~ 

is obtained by the superposition of the functions f~(z~) of (1.2) for single cracks and by 
taking into account the transformation formula (1.4) when changing to another coordinate 
system. 

If the boundary conditions 

0Uk]yh= ~ 0, lxkl <~ a h (k = t,2, . . . .  N), 

are satisfied on the boundaries of the cracks, then to determine the unknown functions ?h(x~) 
one obtains a system of singular integral equations, 

a n  N a~  

,f ~,~ (t) dt 
- - a  n k ~ i  - - a  k 

= ~ f ,  (x), [x i ~ a~ (n = t,2 . . . .  , N). (1.5) 

The notation ~' indicates that the term with the row number should be omitted in the 
summation. The kernels Rn~(t, x) are found by using the relations 

eiCCk ~ r " 0 Rnu(t,x)----Re T n _  X n / ,  T k =  te i~k-~- z~, Xn = xe '% + zn. 

Thus the determination of the stationary temperature field in a plane with thermally 
insulated cuts has been reduced to the solving of a system of singular integral equations 
(1.5). It is noted that in [8] Eqs. (l.5)were obtained in a somewhat different way. 

The solution is now found in the case of large distances between cracks. Then for 
the kernels f~.h (t,x) the expansions 

:oo p 

R , ~ , ( t , : c ) -  x~ ~ ,~' ~-~.~-~-~ ~--~ ...2.J Cnhpvl"  s ~ n k  , 
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are valid; here 

c . ~ w  - -  ( - -  1) C v cos [(p - -  v -? va~ - -  (p -~ 

v p (p - -  1) . . .  (p - -  v ~ '1) �9 0 7.0. 
Cp = v! ' dnhe~t~nh ~ Zn - -  

By i n t r o d u c i n g  t h e  d i m e n s i o n l e s s  p a r a m e t e r  

, 2a 
n , =  --U' a = m a x  {a~}, d - -  r a in  {d~},  

which characterizes the distances between cracks the solution of the system (1.5) of integral 
equations is found, following [9], as the series 

oo 
p 

p==O 

where 

, t S "~ - -  t ' ~ / ~  (0  dt , 
~',,o (:~) - -  . q /  % - ,,~ ., _ ~'-' ~ _ ~ ,  ~'n~ (x) = O; 

' t ~ H~ , a,~ a,~,.~,,  t 3 ,1 , .~ ,~_ l ] ( t )  d t  (p  = 2 , 3  . . . .  ) ;  

For collinear cracks the system (1.5) has a solution in closed form. 

2. When solving the thermal elasticity problem for a plane with cuts one has to de- 
termine the thermo-elastic state of the continuous plane due to the temperature field t0(x, y), 
to find the stress components on the cuts, and then to solve the force problem [9]; the 
latter is done by taking into account that forces have been applied to the boundaries of 
the cuts which are equal in magnitude but opposite in sign to the found stresses. Moreover, 
the stress distribution due to the perturbed temperature field t(x,y) must also be estab- 
lished. This will be considered later when the solutions to the first two problems have been 
found. 

It is assumed now that there is one crack Ixhl ~.~ ak, yh-:0, in an elastic isotropic plane 
whose edges do not touch and are not loaded. Then 

( 2 . 1 )  

where Nk, T k represent the normal and tangential stresses, respectively, on the Ok, x k axis. 

The following notation is now introduced: 

u~_ _ u , :  ~- i(v~_ _ v;_)  i (~ + ~) ' = 2G " gh (xh) ,  ]xhl ~ ah.  ( 2 . 2 )  

By u s i n g  t h e  f o r m u l a s  [ 1 0 ,  11 ]  

N k  - -  iTh = a% (z 0 -',- r  (zp,) + z~ r  (zh) + ~k  (zh); 

2G 0 ~  (uk -i- ivy) = • (zh) = r (zh) - -  zk0Pi~ (zh) - -  T h (zk) -~ ~F h (zh), 

o n e  o b t a i n s  f r o m  t h e  c o n d i t i o n s  ( 2 . 1 )  a n d  ( 2 . 2 )  t h e  c o n j u g a t e  p r o b l e m  o n  t h e  i n t e r v a l  
lx~} ~ a k for the function (1)~(z~,) , 
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z~,~ (t) 
0 +  (xh) - -  cl)~- (xt,) = ~Gk (xh), Gk(x) = g'k (z) + ~ : T '  (2.3) 

where ~(z~, ~h(Z~) are complex stress potentials [i0]; Fk(z k) is given by the formula (1.2); 
z=3--4v , ~=aE for a deformation in a plane and z~(3--v)(i-l~), ~=eE (i+v) for a general- 
ized two-dimensional stressed state*; a is the temperature expansion coefficient; G=E/2(I-15v) 
is the shear modulus, E is the elasticity modulus; v is the Poisson coefficient. 

From the boundary-value problem (2.3) the function ~a(~) which decreases at infinity 
is given by the Cauchy integral [i0] 

ah 
G k (t)dt 

a)k (zh) = ~ t - ~k 
- - a  k 

Hence one can draw the conclusion that the integral equations of the thermoelastic 
problem for a body with cracks are identical: with those for the corresponding force problem 
[9, 12] provided that in the latter the unknown functions g~(x) are replaced by G~(x) . In 
the case of a single straight line crack Ixhl ~a h, yh=O, whose edges are not loaded one has 
the equation 

ah 

' Gl~(t) dt 

t - - x  
- - a h  

and its solution is given by [7] 

l / . ~  - x. 
(2.4) 

Integrating the latter from-- a h to a1~ , one finds the value of the constant A k. 

o h  a k 

A~ = • -i- -f ~'I~ (x) dx  = -- -- xy'h (x) dx .  •  
- - a  k - - a  h 

(2.5) 

In the above one has taken into account that ya(--ah)=V1~(ah)=O. By substituting %,~(x) from 
(1.3) into (2.5) one obtains 

ak 

IV' ,' A e  == ~ , at~ - -  f1~ (t) dt .  

If the function Gh(x ) is known, one is able to determine the thermoelastic state over 
the entire plane. In particular, the coefficients of stress intensity at the vertices of the 
crack are found from the formula 

[ I # ~  ] , ~- V a h - -  x g  (2.6) 

In the above the Upper sign refers to the right vertices of the crack, and the lower 
one to the left vertices. By using the relations (2.4) and (2.6) one can write 

In this case it has been assumed that the plate is thermally insulated on its lateral sur- 
faces. 
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ak 

j' V a 2 - - t ~ d t ,  "- O. (2 7) 
--a k 

For a homogeneous heat flow at infinity which is perpendicular to the Ox axis, that is, 
for 

to(X, Y):qg,  ( 2 . 8 )  

one finds from the formulas (2.7) and (2.8) that 

k ~  --~ ~. ~qak |/-~'~ COS ~Zk .+ 
-- u+i , kfk--O.  (2.9) 

This result was previously obtained in [13]. 

In the case of a system of cracks [x~[~a h, y~=0(k----i, 2 ..... N), directed arbitrarily 
and free of loads the integral equations are given by [9] 

an N t a k 
[. G n (t)  dt 

�9 
--am k= I --a k 

[G k (t) Knh (t, x) q- G h (t i Lnk (t, x)] dt = O, [x[~a~(n = i , 2  . . . . .  N). (2.10) 

In the above 

K~ k (t, x) ---- e - ~ h  { 
"--5-- ~T k -- Xa 

e -icth [ t 
L~h (t,  x) = - y - - -  ?h - x,~ 

, e -2icon 

T k - -  n ] 

T h -  X n e_2iun]" J 
By using the inversion formula for Cauchy integrals [7], a system of Fredholm integral 

equations of the second kind is found from the formula (2.10), 

N ak } 

G~ (x) = t + . .  1/-,,7-----= iA~ ~-~' .f [Gk (t) i n ~  (t, x) q- Ga (t) N~h (t, x)] d t ,  ix[ ~ aN (n = i, 2 , .  , N). ( 2 . 1 t )  
V a T  --t-" k=t  --a k 

In the above one has 

a l?~ 

N,~  (t, x) = ~ S 

r 2 ~2 
1 / a n  - 

For large distances between cracks the solution of the system (2-11) can be obtained 
in the series form [9] 

where 

o r  

p:0 

G~o (x) = 
iAno 

, G ~ ( x )  = 0; 
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",/-~'~-:7---~.~ �9 ~ X 
a V a n - x  (h=i  s=l  v=l  \ n / 

% t'~' [anhs,,:Gh,l~--s--I G h , p - - s - - t  (/)] d~ } X a7  v j '  ( t)  ~-  b,~a,~ -~ ~A.~ 
- - a  k 

(p  = 2 , 3 . . . ) .  

In the above the values a n ~ v  , bm~v, and A~p are coefficients of the expansion of the 
functions ~nh(t, x), L~h(t, x),and .4~ for small values of the parameter ~. 

ec l) 

( K n h  ( t ,  x )  0 
\bnhpV ] X ~ - v  dnh--P--l;  

p~O "v~O 

p ~ O  - - a n  

c'l~U, pV 

- ~  "i) rzhl 

=- 2) a,~ 

- ( p  - -  ~,) ~,~ - (v --  

--I) ' c p - l e x p ~  [ (p  -i- l )  J3~j~ - -  ( p  - -  v)  a n  - -  -~ 

j -!- e x p  r i[( p -i- 1) [3,~ - -  (p  - -  v -i- 2)  o~n - -  (v - -  1) c~h] I i '  

CV-i t i) a~]} - p ~_, exp [~ [(p = I) ~,~ - (p - ~ + 21 c~n - (~ - i) ~11 }. 

It should be noted that the approach used here to solve two-dimensional thermoelastic 
problems for bodies with cracks can also be employed in practical applications, since the 
problems of heat conduction and thermal elasticity, as well as the force problem, are all 
solved in the same manner. By employing this method one is able to obtain exact solutions to 
thermoelastic problems in the case of two collinear cracks of equal length, as well as for 
a periodic system of collinear cracks in the infinite plane~ The former problem was analyzed 
in [2] and its solution is given below. 

3. Let us consider a periodic system of col!inear thermally insulated cracks located 
on the Ox axis (~n~0, a~=a (I ,s, =nd, n~0,+l,4 2,...)and subjected to the same conditions (/n(x)= 
[(x)). In this case the system (1.5) is reduced to a single integral equation (yn(z)=?l(X)) 
[12], namely, 

a 

f 1 :'s (0 c.tg ~ (~ - ~) ~-7 . ,,. d t  = / ( ,,~, ]'*1 ~< a. 
--(t  

Its solution is given by 

(,I 
( 3 . 1 )  

Integrating (3.1) between the limits --a to a one finds that C2 = 0. 

To the system (2.10) of integral equations there corresponds in this case (Gn(x)~G1(x)) 
the equation 

~t' ,~ (t - . r )  d t  = () ,  Irt  ~ a ,  G 1 ( t )  c t g  tJ 

--(l 
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whose solution is 

By using the relation 

G (x) -- - -  w:, 

l / ~  ~" tU-Tf  - -  tg'-' -- d- 

i Gl(x )  d x = ~ A  1, 
- - a  

one finds the value of the constant Ca: 

C3 A1 . 

d cos 7 

The solution has thus been reduced to the finding of the constant At. Substituting 
in (2.5) the value of ?i(x) as given by (3.1) and inverting the order of integration and 
evaluating the internal integral, one obtains 

A 1 - -  2 n ( •  .~ / ( t ) H ( t ) d t ,  

t -~- t.g ~ -~ -}- 1 / tg ~ T -- Ig~ y 
H (t) = In  [ /  / ga 

l I/1 ! 1" '7  tg~ d -  t g ~  

The coefficients of stress intensity are found by using the formula (2.6). This 
produces 

a d_  

k+_ -:  ~ ~d C f (t) H (t) dr, kf- = O. 
2n (• @ t ) adtg -~ ._ 

( 3 . 2 )  

In the case of homogeneous heat flow at infinity (/(z)=--2q) one finds from (3.2) that 

~- - -  . - ~  zra[ ki~:= O. (3.3) 2~qd~ I n  cos ~- ,  
k 2  = -[- ,~(• + t) 1 /  a d t g ?  

One should mention in conclusion that the formulas (2.7) and (3.2) provide only those 
components of the coefficients of stress intensities which are due to perturbations of the 
temperature field. The results (2.9) and (3.3) represent a complete solution of the problem, 
since the linear temperature field to(X, y) of (2.8) does not give rise to any stresses in 
the continuous infinite plane. 

i. 

2. 

LITERATURE CITED 

G. S. Kit, "Thermoelastic problems of bodies with cracks" Visn. Akad. Nauk UkrSSR, 
No. 4 (1972). 
G. S. Kit and N. A. Dorosh, "Thermoelastic state of a plane with two equal rectilinear 
cracks," in: Stress Concentration [in Russian], No. 3, Naukova Dumka, Kiev (1971). 

6 3 2  



3. G. S. Kit and B. L. Lozovoi, "Thermoelastic state of a plane weekened by two 
collinear cracks," Fiz.-Khim. Mekh. Mat., i0, No. 2 (1974). 

4. N. A. Dorosh and G. S. Kit, "Thermoelastic state of a plane with two equal arch- 
like cracks," Izv. Akad. Nauk SSSR, M~kh. Tverd. Tela, No. 5 (1969). 

5. N. A. Dorosh, "Thermoelasticity of a circular plate with archlike cracks due to heat 
sources," Vestn. Livovsk. Politekh. Inst., No. 47 (1970). 

6. G. S. Kit, "Two-dimensional problem of thermoelasticity for a body with cracks," 
Dopov. Akad. Nauk UKrSSR, Ser. A, No. 5 (1969). 

7. F. D. Gakhov, Boundary-Value Problems [in Russian], Fizmatgiz, Moscow (1963). 
8. M. P. Savruk and O. P. Datsishin, "Two-dimensional problem of heat conduction for a 

body with a system of arbitrarily located thermally insulated cracks," Visn~ Livovsk. 
Politekh. Inst., Mat. Mekh., No. 87 (1974). 

9. A. P. Datsyshin and M. P. Savruk, "System of arbitrarily directed cracks in elastic 
bodies," Prik. Mat. Mekh., 37, No. 2 (1973). 

i0. N. I. Muskhelishvili, Some Fundamental Problems of Mathematical Theory of Elasticity 
[in Russian], Nauka, Moscow (1966). 

ii. I. A. Prusov, Some Problems of Thermoelasticity [in Russian], Izd. Belorus. l~ivo 
Minsk (1972). 

12. M. P. Savruk and A. P. Datsyshin, "Interaction between a system of cracks and the bound- 
ary of an elastic body," Prikl. Mekh., I0, No. 7 (1974). 

13. Si, "The singular character of temperature stresses at the vertex of a crack," ASME 
Trans., Ser. E, PM, No. 3 (1962). 

633 


